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Parisi's mean-field solution for spin glasses as an analytic 
continuation in the replica number 
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SPh-T, CEN Saclay, 91191 Gif-sur-Yvette Cedex, France 

Received 21 December 1982 

Abstract. Parisi's replica symmetry breaking solution for spin glasses is extended to finite 
replica number n. The free energy F p ( n )  obtained this way, as well as its first two derivatives 
with respect ton, are shown to join the corresponding values in the Sherrington-Kirkpatrick 
(SK) solution at a characteristic value n,(T), where stability breaks down in the latter. The 
continuation composed of the SK branch F&) for n 2 n,(T) and the Parisi branch Fp(n! 
for 0 s n s n,(T) fulfils the requirements of convexity, monotonicity and stability for all n. 

The replica method (Hardy et a1 1934, Kac 1968, Lin 1970, Edwards 1972, Edwards 
and Anderson 1975, Grinstein and Luther 1976, Emery 1975) seeks to evaluate the 
average of a logarithm through the innocent-looking formula 

1 
(In 2)  = lim - ln(2"). 

n = O  n 

In typical applications 2 is the partition function of a system with random interactions, 
the average is over the randomness and the left-hand side is basically the quenched 
free energy, F = -T(ln 2). The meaning of 

4 ( n )  = ( l / n )  wzn> (2) 
on the right is obvious as long as n, the number of replicas, is a positive integer. In 
order to take the limit n = 0, however, one has to continue 4 from integer to real n,  
which is, in general, a largely underdetermined task. Indeed, in a critical analysis of 
the possible pitfalls of the replica method as applied to the Sherrington-Kirkpatrick 
(1975) problem, van Hemmen and Palmer (1979) came to the conclusion that there 
had to exist at least two distinct continuations in that problem: the 'obvious' continu- 
ation, consisting in interpreting n simply as a real variable in formulae derived on the 
integers, which was used by SK and led them to unacceptable low-temperature results, 
and another, unknown continuation, which was to be expected to produce sensible 
results. 

The fact that 4 ( n )  is related to the nth moment of a random variable imposes 
some restrictions on the possible continuations. As pointed out by van Hemmen and 
Palmer, (2) implies e.g. that n $ ( n )  must be a convex function of n. Derrida (1980), 
in the context of his random energy model, observed that this property breaks down 
at low temperatures at some characteristic n = n,(T) (c stands for convexity) below 
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which the ‘obvious’ continuation becomes meaningless; he also proposed a simple 
Maxwell-construction-like extrapolation from n, down to n = 0, which turned out to 
reproduce the correct low-temperature results, known exactly for this model (Derrida, 
private communication). Rammal(l981) followed a similar approach in the SK model. 
To the condition of convexity he added the further requirement that $(n) must be 
a non-decreasing function of n. The proof of this property can be obtained by 
substituting X = Z“,  Y = 1 and r = n’/n,  n’>n, into the Holder inequality 

(XU) c (Xr)l ’r(  Y S ) y  r > l ,  l / r  + l /s  = 1, 

valid for any positive random variables X ,  Y. Rammal also observed that both 
convexity and monotonicity broke down in the SK solution below T,, at some charac- 
teristic values n,(T) and n,(T), respectively, with n,(T) being apparently the larger 
of the two for all T c T,. Therefore n,(T) can be considered as a lower bound to the 
range of n values where the SK solution can be accepted. This lower bound is rather 
small for all T: near T, = 1 it vanishes with the reduced temperature T = (Tc- T ) / T ,  
as n,(T) =T+. . . , it reaches a maximum of about 0.2 around T -0.5 T, (Ramma1 
1981), while at low T it goes like n,(T) = (2 ln(4/3))”2T +. . . . In view of the smallness 
of n,(T), it seemed reasonable to try an extrapolation from n, down to n =0: the 
one proposed by Rammal consisted in replacing the SK free energyF(n) by its minimum 
F(n,) for all 0 < n < n,. The results for various physical quantities obtained in this 
way turned out to be in fair agreement, though certainly not identical, with the 
predictions of Parisi’s (1979, 1980) replica symmetry breaking solution. 

In addition to the requirements of convexity and monotonicity in n, there is an 
all-important third condition that any meaningful continuation has to fulfil, namely 
the condition of stability. This means that the matrix of second derivatives of F with 
respect to the components of the order parameter qpB must have non-negative eigen- 
values. As is well known from the work of de Almeida and Thouless (1978), the SK 
solution is unstable at n = 0. Since, on the other hand, it is evidently stable for positive 
integer n, it is natural to introduce a third characteristic n value, to be called n,(T), 
associated with the breakdown of stability. The dangerous eigenvalue of de Almeida 
and Thouless (AT) can be written as 

(3) A (n) = 1 - T-’[cos~-~[], 

where [. . .In is an ‘average’ with respect to the weight function 

exp(-z2/2) cosh “6 
j-”, dz exp(-z2/2) cosh “6 with 6 = ql” z / T  (4) 

and 4 is determined by q = [tanh’ 51,. The definition of n, is then A(n,) = 0 (if there 
are more roots, the largest is meant). 

At this point one is naturally led to inquire about the relationship between n,(T) 
and the previous characteristic n’s. The first observation we make in this paper is that 
the largest, hence the only relevant, of the three is n,. Indeed, from (3), (4) it is easily 
seen that n, = $T + . . . near T,, while n, = T(2 ln(l/T))1’2 at low temperatures; therefore 
it is larger than n,(T) which in turn is larger than n,(T) at both extremes, and it seems 
probable that this holds true also for all intermediate T values. This means that the 
breakdown of stability prevents one from reaching Rammal’s lower bound and, at 
the same time, raises the question whether it is possible to find a natural continuation 
of the SK branch starting from n, and fulfilling all the requirements discussed above 
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for 0 s n s n,. The second point of this paper is that, at least near T,, this is quite 
possible: the continuation found possesses all the required properties, joins the SK 
branch at n, smoothly (the free energy and its first two derivatives are continuous at 
n,) and, most remarkably, goes over into Parisi’s solution at n =O. The rest of the 
paper is a demonstration of this statement. 

Close to T, the free energy functional (or $(n) itself) can be expanded in qup. 
Dropping an irrelevant constant term, absorbing a factor TW2 into q and keeping 
only that one of the quartic terms which is responsible for the replica instability, one 
arrives at the truncated model expression (Parisi 1979) 

Because of the omitted q4 terms (5) is not a consistent expansion in T, hence there is 
some arbitrariness in the coefficient in front of the quartic term. The value we have 
chosen (following Parisi) is such that it reproduces all the quantities which are of 
importance for us (the eigenvalues of the Hessian, the values of the critical n ’ s )  
correctly to leading order in T. An additional remark is that, in the same spirit as 
Parisi, we regard ( 5 )  as a closed model expression and do not consider the effect of 
the neglected terms when making expansions in T. In order to see the difference 
between the SK and Parisi solutions we have to work to O ( T ~ ) ,  where we stop, for 
simplicity. 

Let us first work out the replica symmetric (SK) solution for (5). Assuming 
qua = q ( l  - S a p ) ,  we find the stationarity condition 

27+(n-2)q+$q2=O. (6) 

Substituting the solution of (6) back into (5 )  and assuming n to be of the order of T,  

we obtain 

(7) 

The dangerous eigenvalue of the Hessian associated with ( 5 )  can easily be obtained 
by the method of AT to be 

1 3  1 4  -$.$~(n)=gT +ET + ~ T 5 [ 1 + 3 ( n / 2 T ) ( 1 - n / 2 T ) ] + .  . . . 

A (n) = 27 -2q +2q2 =q(n -$q). (8) 

On the basis of (6), (7) and (8) it is easy to check that the convexity of n$(n)  
breaks down at n, = $7, monotonicity of $(n) at n, = T and stability at n, = $7, the same 
values as we have found in the complete model. Because of the breakdown of stability 
the symmetric solution becomes meaningless below ns. 

In order to find an acceptable continuation into the range 0 < n < n,, we propose 
to consider a Parisi-type ansatz for the matrix qaB, i.e. to make a hierarchical subdivision 
of the matrix into blocks of size pl, p2, . . . , p ~ ,  with matrix elements q, I = 0 ,1 ,2 ,  . . . , R 
on the Ith level of hierarchy, substitute it into ( 5 )  and continue the resulting formula 
in n and the PI’S into the interval [0,1]. Upon continuation the matrix qas is ‘turned 
inside-out’, the original order of n and the PI’S is reversed and becomes n = p o  <pl < 
p~ < . . . < P R  < P R + l =  1. The only difference with respect to Parisi’s scheme is that n 
will not be allowed to go to zero, but will be considered to be a small positive number. 
Next the continuous limit R + 00 is performed, whereupon the p’s fill the interval 
[n, 13 quasi-continuously, P I  = n + (1 - n) l / (R  + l), and an order parameter function 
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q(x), n sx  c 1, is defined as by Parisi. Working out ( 5 )  for this ansatz yields 

This is stationary with respect to variations of q at 

41, x 1 c x s 1 ,  

3 where xo= 2qo=5n and x1 = 2q1 is determined by the condition ~ - - q l + q :  =0,  the 
same as in the original Parisi scheme corresponding to n = 0. The stationary solution 
(10) is almost exactly the same as Parisi's q(x) in a field; the only difference is that 
here q(x) is not defined for x cn. The solution (10) is meaningful only as long as 
q0<ql, that is n s n , ( T )  =$ql(T). Comparison with (6) and (8) shows that the upper 
bound n,( T )  for the validity of (10) is the same as where the stability of the SK solution 
broke down. At this critical value of n a de Almeida-Thouless (1978) type of transition 
is taking place. 

Substitution of (10) into (9) gives 

O s n  s n , ( T ) .  (11) 1 3  1 4  1 5 - 2 3 5  5 
- - ( / / p ( n ) = v  +e7 +107 135(4) n +. * . ,  

From (7) and (11) one easily sees that $p(n) and $se(n) ,  along with their first two 
derivatives, coincide at n,(T): the 'transition' is of third order. The analogy with the 
AT transition makes me believe that this remains true also for the complete model. 
(Note that a Kammal-type extrapolation, starting from the minimum of G S ~ ( n ) ,  would 
produce a second-order transition: one cannot match the second derivative at an 
extremum while trying to save monotonicity.) 

The Parisi branch (11) obviously fulfils the requirements of monotonicity and 
convexity. As for the stability, its demonstration takes a rather long calculation whose 
details are clearly impossible to describe here. The proof follows the stability analysis 
of the ( n  = 0) Parisi solution (De Dominicis and Kondor 19831, or even more closely 
the same type of analysis in a field (Kondor and De Dominicis 1983), and arrives at 
the result that the eigenvalues of the Hessian form two bands: the band of large (order 
7 )  eigenvalues of width -72 and that of the small ( - T ~ )  eigenvalues, with lower edge 
zero for any 0 < n < n,. As n approaches n, = 0 the bandwidths vanish and the spectrum 
goes over into the two (highly degenerate) AT eigenvalues 27 and 0 corresponding to 
n = n,. The Parisi branch is therefore marginally stable for all 0 c n s n,. 

I conclude with a few remarks. Though the observations above were made on the 
truncated model, they may nevertheless have a certain heuristic value also for the full 
SK problem. They emphasise again the role of stability considerations and may perhaps 
give additional credence to the Parisi solution by demonstrating how it can be placed 
in the mathematically minded approach initiated by van Hemmen and Palmer (1979). 
I have not been able to say anything about the uniqueness of the continuation found; 
the proof of that would probably be equivalent to the proof of global stability of the 
Parisi solution, undoubtedly a very hard problem. Finally, I point to a most amusing 
possible application of the above approach: the vanishing of n,(T) at low temperatures, 
combined with the assumption of a third-order transition, invites one to attempt to 
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guess the zero-temperature properties of the Parisi solution from an extrapolation 
starting from the SK solution near n,(T). This is left for a later work. 

I greatly benefited from discussions with B Derrida, C De Dominicis, G Parisi and 
R Rammal. I also thank B Derrida and C De Dominicis for reading the manuscript. 
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